Set-upWSP \Rightarrow ccc? FP and trees

Smital and Fubini among trees

Marcin Michalski, based on joint work with Robert Rałowski & Szymon Żeberski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2019, section Set Theory and Topology 28.01.2019, Hejnice

伺 ト イヨト イヨト

Let \mathcal{I} be a σ -ideal in a Polish space X possessing Borel base and containing singletons.

Definition

We call a set L I-Luzin set if $|L \cap A| < |L|$ for every set $A \in I$. L is a super I-Luzin set, if $L \cap B$ is an I-Luzin set for each $B \in Bor(X) \setminus I$.

э.

Let \mathcal{I} be a σ -ideal in a Polish group (X, +).

Definition

We say that \mathcal{I} has a Weaker Smital Property (WSP), if there exists a countable dense set D such that for every Borel \mathcal{I} -positive set B a set D + B is \mathcal{I} -residual.

通 ト イ ヨ ト イ ヨ ト -

Let \mathcal{I} be a σ -ideal in a Polish group (X, +).

Definition

We say that \mathcal{I} has a Weaker Smital Property (WSP), if there exists a countable dense set D such that for every Borel \mathcal{I} -positive set B a set D + B is \mathcal{I} -residual.

Why Weaker? See:

A. Bartoszewicz, M. Filipczak, T. Natkaniec, On Smital properties, Topology and its Applications 158 (2011), pp. 2066-2075.

伺 ト イヨト イヨト

 ${\mathcal I}$ is tall if every ${\mathcal I}\text{-positive Borel set contains a perfect set from }{\mathcal I}.$

イロト イヨト イヨト イヨト

Let $\mathcal{I} \subseteq P(\mathbb{R})$ has WSP. Then the following are true

- *I*-Luzin sets are *I*-nonmeasurable.
- If *I*-Luzin sets exist then also super *I*-Luzin sets exist.

Theorem

 $\mathcal{I}\text{-}Luzin$ sets are $\mathcal{I}\text{-}nonmeasurable,$ if, and only if, \mathcal{I} is tall.

Question

Does WSP imply ccc?

イロト イヨト イヨト イヨト

= 990

 $\begin{array}{c} \text{Set-up} \\ \text{WSP} \Rightarrow \text{ccc?} \\ \text{FP and trees} \end{array}$

Theorem

If \mathcal{I} has the WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Let $\mathcal{I} \subseteq P(X)$ and $\mathcal{J} \subseteq P(Y)$ be σ -ideals. We define a Fubini product $\mathcal{I} \otimes \mathcal{J}$ of these ideals as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in Bor(X \times Y))(A \subseteq B \& \{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I})$

イロト イヨト イヨト ・

I na∩

Let $\mathcal{I} \subseteq P(X)$ and $\mathcal{J} \subseteq P(Y)$ be σ -ideals. We define a Fubini product $\mathcal{I} \otimes \mathcal{J}$ of these ideals as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in Bor(X \times Y))(A \subseteq B \& \{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I})$

Proposition

If $\mathcal{I} \otimes \mathcal{J}$ is ccc then \mathcal{I} and \mathcal{J} are ccc too.

Let $\mathcal{I} \subseteq P(X)$ and $\mathcal{J} \subseteq P(Y)$ be σ -ideals. We define a Fubini product $\mathcal{I} \otimes \mathcal{J}$ of these ideals as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in Bor(X \times Y))(A \subseteq B \& \{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I})$

Proposition

If $\mathcal{I} \otimes \mathcal{J}$ is ccc then \mathcal{I} and \mathcal{J} are ccc too.

Definition

We say that a σ -ideal $\mathcal{J} \subseteq P(Y)$ is Borel-on-Borel if for every Borel set $B \in Bor(X \times Y)$ a set $\{x \in X : B_x \in \mathcal{J}\}$ is Borel.

イロト イポト イヨト イヨト

Let $\mathcal{I} \subseteq P(X)$ and $\mathcal{J} \subseteq P(Y)$ be σ -ideals. We define a Fubini product $\mathcal{I} \otimes \mathcal{J}$ of these ideals as follows:

 $A \in \mathcal{I} \otimes \mathcal{J} \Leftrightarrow (\exists B \in Bor(X \times Y))(A \subseteq B \& \{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I})$

Proposition

If $\mathcal{I} \otimes \mathcal{J}$ is ccc then \mathcal{I} and \mathcal{J} are ccc too.

Definition

We say that a σ -ideal $\mathcal{J} \subseteq P(Y)$ is Borel-on-Borel if for every Borel set $B \in Bor(X \times Y)$ a set $\{x \in X : B_x \in \mathcal{J}\}$ is Borel.

Proposition

 \mathcal{M} and \mathcal{N} are Borel-on-Borel.

< ロ > < 同 > < 三 > < 三 >

If \mathcal{I} has the WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

< 回 > < 三 > < 三 > -

If \mathcal{I} has the WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

• Let $A_{\alpha} = \{x \in X : B_x \notin \mathcal{J}\}$ for every $\alpha < \omega_1$.

< 回 > < 三 > < 三 > -

If \mathcal{I} has the WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

- Let $A_{\alpha} = \{x \in X : B_x \notin \mathcal{J}\}$ for every $\alpha < \omega_1$.
- If $\bigcap_{\alpha < \omega_1} (D + A_\alpha) = \emptyset$, then $cov(\mathcal{I}) = \omega_1$.

くぼう くほう くほう

If \mathcal{I} has the WSP, then \mathcal{I} is ccc or $cov(\mathcal{I}) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

- Let $A_{\alpha} = \{x \in X : B_x \notin \mathcal{J}\}$ for every $\alpha < \omega_1$.
- If $\bigcap_{\alpha < \omega_1} (D + A_\alpha) = \emptyset$, then $cov(\mathcal{I}) = \omega_1$.
- If not, then let $x \in \bigcap_{\alpha < \omega_1} (D + A_\alpha)$.

くぼう くほう くほう

If $\mathcal I$ has the WSP, then $\mathcal I$ is $\operatorname{ccc} \operatorname{or} \operatorname{cov}(\mathcal I) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

- Let $A_{\alpha} = \{x \in X : B_x \notin \mathcal{J}\}$ for every $\alpha < \omega_1$.
- If $\bigcap_{\alpha < \omega_1} (D + A_\alpha) = \emptyset$, then $cov(\mathcal{I}) = \omega_1$.
- If not, then let $x \in \bigcap_{\alpha < \omega_1} (D + A_\alpha)$.
- Since D is countable, there is $d \in D$ and an uncountable set $T \subseteq \omega_1$ such that $x d \in \bigcap_{\alpha \in T} (A_\alpha)$.

くぼう くほう くほう

If $\mathcal I$ has the WSP, then $\mathcal I$ is $\operatorname{ccc} \operatorname{or} \operatorname{cov}(\mathcal I) = \omega_1$

Proof.

Let $\{B_{\alpha} : \alpha < \omega_1\} \subseteq Bor(X \times Y) \setminus \mathcal{I} \otimes \mathcal{J}$ be a family of pairwise disjoint sets, where \mathcal{J} is *Borel*-on-*Borel* and ccc. Let D witness WSP for \mathcal{I} .

- Let $A_{\alpha} = \{x \in X : B_x \notin \mathcal{J}\}$ for every $\alpha < \omega_1$.
- If $\bigcap_{\alpha < \omega_1} (D + A_\alpha) = \emptyset$, then $cov(\mathcal{I}) = \omega_1$.
- If not, then let $x \in \bigcap_{\alpha < \omega_1} (D + A_\alpha)$.
- Since D is countable, there is $d \in D$ and an uncountable set $T \subseteq \omega_1$ such that $x d \in \bigcap_{\alpha \in T} (A_\alpha)$.
- A family {(B_α)_{x−d} : α ∈ T} witnesses that J is not ccc, a contradiction, hence I ⊗ J is ccc, so I is ccc too.

Set-up WSP \Rightarrow ccc? FP and trees

Remark

Let \mathcal{I} possess WSP. The following are equivalent:

- $\operatorname{cov}(\mathcal{I}) \geq \omega_2$.
- For every family of sets {B_α : α < ω₁} ⊆ Bor(X)\I there is a set T ⊆ ω₁ of cardinality ω₁ such that ⋂_{α∈T} B_α ≠ Ø.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Set-up WSP \Rightarrow ccc? FP and trees

Remark

Let \mathcal{I} possess WSP. The following are equivalent:

- $\operatorname{cov}(\mathcal{I}) \geq \omega_2$.
- For every family of sets {B_α : α < ω₁} ⊆ Bor(X)\I there is a set T ⊆ ω₁ of cardinality ω₁ such that ⋂_{α∈T} B_α ≠ Ø.

 J. Cichoń, A. Szymański, B. Weglorz, On intersection of sets of positive Lebesgue measure, Colloquium Mathematicum, vol. 52, no. 2 (1987), pp. 173-174.

Marcin Michalski

Smital and Fubini among trees

イロト イヨト イヨト イヨト

= 990

Theorem

If \mathcal{I} has the WSP, then \mathcal{I} is tall.

Smital and Fubini among trees

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Theorem

If \mathcal{I} has the WSP, then \mathcal{I} is tall.

Lemma

Let P be a perfect nonempty subset of \mathbb{R} . Then there exists a perfect (and nonempty!) set $P' \subseteq P$ for which $|P' \cap (x + P')| \leq 1$ for $x \neq 0$.

Marcin Michalski

We say that a pair $(\mathcal{I}, \mathcal{J})$ of σ -ideals has a Fubini Property (FP), if

 $(\forall B \in Bor(X \times Y))(\{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I} \Rightarrow)\{y \in X : B^y \notin \mathcal{I}\} \in \mathcal{J})$

◆ロ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● の Q ()

We say that a pair $(\mathcal{I}, \mathcal{J})$ of σ -ideals has a Fubini Property (FP), if

 $(\forall B \in Bor(X \times Y))(\{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I} \Rightarrow)\{y \in X : B^y \notin \mathcal{I}\} \in \mathcal{J})$

Example

 $([\mathbb{R}]^{\leq \omega}, [\mathbb{R}]^{\leq \omega})$ does not have the FP.

Proof.

Let P be as in the Lemma. Consider

$$B = \{(x, y) : y \in P \land x \in P - y\}.$$

→ 伺 → → ヨ → → ヨ → の Q (や

Set-up WSP \Rightarrow ccc? FP and trees

Definition

We say that a pair $(\mathcal{I}, \mathcal{J})$ of σ -ideals has a Fubini Property (FP), if

 $(\forall B \in Bor(X \times Y))(\{x \in X : B_x \notin \mathcal{J}\} \in \mathcal{I} \Rightarrow)\{y \in X : B^y \notin \mathcal{I}\} \in \mathcal{J})$

Example

 $([\mathbb{R}]^{\leq \omega}, [\mathbb{R}]^{\leq \omega})$ does not have the FP.

Proof.

Let P be as in the Lemma. Consider

$$B = \{(x, y) : y \in P \land x \in P - y\}.$$

Proposition

If \mathcal{I} is not tall, then $(\mathcal{I}, [\mathbb{R}]^{\leq \omega})$ does not have the FP.

Let $T \subseteq \omega^{<\omega}$ be a tree. Then

• for each $\tau \in T$ succ $(\tau) = \{n \in \omega : \tau^{\frown} n \in T\};$

•
$$split(T) = \{\tau \in T : |succ(\tau)| \ge 2\};$$

•
$$\omega$$
-split $(T) = \{ \tau \in T : |\operatorname{succ}(\tau)| = \aleph_0 \}.$

 stem(T) ∈ T is a node τ such that for each σ ⊊ τ |succ(σ)| = 1 and |succ(τ)| > 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

A tree T on ω is called

- a Sacks tree or perfect tree, if for each node σ ∈ T there is τ ∈ T such that σ ⊆ τ and |succ(τ)| ≥ 2;
- a Miller tree or superperfect tree, if for each node σ ∈ T exists τ ∈ T such that σ ⊆ τ and |succ(τ)| = ℵ₀;
- a Laver tree, if for each node $\tau \supseteq stem(T)$ we have $|succ(\tau)| = \aleph_0$;

くぼう くほう くほう

Smital and Fubini among trees

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Let $T \subseteq \mathbb{Z}^{<\omega}$ be a Laver (resp. Miller) tree. Then there exists a Laver (resp. Miller) subtree $T' \subseteq T$ such that

Marcin Michalski

 $|[T'] \cap (x + [T'])| \le \omega,$

for all $x \in \mathbb{Z}^{\omega}$ satisfying $(\forall^{\infty} n)(x(n) \neq 0)$.

Main Lemma

Let X, d be a metric space. We say that a set A has a Distinct Distances Property (DDP), if for every $\delta > 0$ we have $d(x, y) = \delta$ for at most one pair $(x, y) \in A^2$ (up to a swap).

Remark

If a set $A \subseteq \mathbb{R}$ has the DDP, then $|A \cap (x + A)| \le 1$ for $x \ne 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let X, d be a metric space. We say that a set A has a Distinct Distances Property (DDP), if for every $\delta > 0$ we have $d(x, y) = \delta$ for at most one pair $(x, y) \in A^2$ (up to a swap).

Remark

If a set $A \subseteq \mathbb{R}$ has the DDP, then $|A \cap (x + A)| \le 1$ for $x \ne 0$.

Proposition

Let $(A_n : n \in \omega)$ be a sequence of infinite subsets of ω . Then there exists a sequence $(B_n : n \in \omega)$ such that:

- $B_n \subseteq A_n$ for all $n \in \omega$,
- $B_n \cap B_k = \emptyset$ for $n \neq k$,
- $\bigcup_{n \in \omega} B_n$ satisfies DDP.

< 回 > < 三 > < 三 > -

Set-upWSP \Rightarrow ccc? FP and trees

Let $T \subseteq \mathbb{Z}^{<\omega}$ be a tree and let us fix $x \in \mathbb{Z}^{\omega}$. Let us denote

$$x + T = \{x \upharpoonright |\sigma| + \sigma : \sigma \in T\}.$$

Let us observe that

Remark

For $\sigma \in T$ and $x \in \mathbb{Z}^{\omega}$ we have:

$$\operatorname{succ}_{x+T}(x \upharpoonright \sigma + \sigma) = \operatorname{succ}_{T}(\sigma) + x(|\sigma|)$$

Main Lemma

Let $T \subseteq \mathbb{Z}^{<\omega}$ be a Laver (resp. Miller) tree. Then there exists a Laver (resp. Miller) subtree $T' \subseteq T$ such that

 $|[T'] \cap (x + [T'])| \le \omega,$

for all $x \in \mathbb{Z}^{\omega}$ satisfying $(\forall^{\infty} n)(x(n) \neq 0)$.

Proof.

Let $A_{\sigma} = \operatorname{succ}_{\mathcal{T}}(\sigma)$ for all $\sigma \in \mathcal{T}$ and apply the Proposition to obtain a family $\{B_{\sigma} : \sigma \in \mathcal{T}\}$. Set \mathcal{T}' such that $\operatorname{succ}_{\mathcal{T}'}(\sigma) = B_{\sigma}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Main Lemma

Let $T \subseteq \mathbb{Z}^{<\omega}$ be a Laver (resp. Miller) tree. Then there exists a Laver (resp. Miller) subtree $T' \subseteq T$ such that

 $|[T'] \cap (x + [T'])| \le \omega,$

for all $x \in \mathbb{Z}^{\omega}$ satisfying $(\forall^{\infty} n)(x(n) \neq 0)$.

Proof.

Let $A_{\sigma} = \operatorname{succ}_{T}(\sigma)$ for all $\sigma \in T$ and apply the Proposition to obtain a family $\{B_{\sigma} : \sigma \in T\}$. Set T' such that $\operatorname{succ}_{T'}(\sigma) = B_{\sigma}$. It works.

< 同 > < 回 > < 回 > …

Э.

Let us denote the Laver ideal by \mathcal{L} .

Theorem

Let $[\mathbb{Z}^{\omega}]^{\leq \omega} \subseteq \mathcal{J} \subseteq \mathcal{L}$. Then the pair $(\mathcal{L}, \mathcal{J})$ does not satisfy the Fubini Property.

・ 同 ト ・ ヨ ト ・ ヨ ト

∃ 990

Thank you for your attention!

<回>< E> < E> < E> <